
JAVA SCRIPTING

1
SSP

What is JavaScript?

 JavaScript was designed to add interactivity to
HTML pages

 JavaScript is a scripting language (a scripting
language is a lightweight programming language)

 A JavaScript consists of lines of executable
computer code

 A JavaScript is usually embedded directly into
HTML pages

 JavaScript is an interpreted language (means that
scripts execute without preliminary compilation)

 Everyone can use JavaScript without purchasing a
license

2

 JavaScript is used in web pages for:
◦ Dynamics : mouse clicks, pop up windows, and

animations

◦ Client-side execution : validating input, processing
requests

 It avoids Client/Server communication and traffic

 JavaScript is executed on client-side

 JavaScript is simple, powerful, and interpretive
language and requires only a web browser

 There have been a number of revisions

 Two types of JavaScript exists:
◦ Client-side  code is sent to the client’s browser for

execution

◦ Server-side  code stays on the server for execution

3

What can a JavaScript Do?

What can a JavaScript Do? …

 JavaScript gives HTML designers a programming
tool - HTML authors are normally not programmers,
but JavaScript is a scripting language with a very simple
syntax!

 JavaScript can put dynamic text into an HTML
page - A JavaScript statement like this:
document.write("<h1>" + name + "</h1>") can write a
variable text into an HTML page

 JavaScript can react to events - A JavaScript can be
set to execute when something happens, like when a
page has finished loading or when a user clicks on an
HTML element

4

What can a JavaScript Do?...

 JavaScript can read and write HTML elements - A
JavaScript can read and change the content of an HTML
element

 JavaScript can be used to validate data - A
JavaScript can be used to validate form data before it is
submitted to a server.

 JavaScript can be used to detect the visitor's
browser - A JavaScript can be used to detect the
visitor's browser, and - depending on the browser - load
another page specifically designed for that browser

 JavaScript can be used to create cookies - A
JavaScript can be used to store and retrieve information
on the visitor's computer

5

The Main Features of JavaScript (summary)

 Efficient Programming by the use of flow
control statements such as for and if.

 Use of predefined objects (Documents, Math
and Date

 Use of events such as mouse clicks or form
input to prompt procedures

 Time procedure

 Data input and output checks via
input/output dialog

 Form Validation

 Opening a new Page and managing frames and
windows.

6

A Comparison of Java and JavaScript

JavaScript Java

Program

Compilation

Not Necessary Necessary

Class,

Inheritance

Object-based.

Uses no classes or inheritance.

(Prototype-based model)

Object-Oriented.

Applets consist of object

classes with inheritance.

(Class-based object model)

Coding Code integrated with ,and

embedded in HTML

Applets distinct from HTML.

accessed from HTML pages

Variable

Declaration

Variable data types not

declared.

Variable data types must be

declared.

Script Execution Interpreted and executed by

client

Bytecodes (compiled files)

downloaded from server,

executed on client

HTML

Document

Manipulation

Possible Not Possible

7

JavaScript coding and Execution

 What you need for Java Script

 A text editor

 A JavaScript Compatible web browser

JavaScript Nestcape Navigator Internet Explorer

1.3 4.06 5.0 and above

8

Learning JavaScript

 Special syntax to learn

 Learn the basics and then use other

people's (lots of free sites)

 Write it in a text editor, view results in

browser

 You need to revise your HTML

Tips

 Check your statements are on one line

 Check your " and ' quotes match

 Take care with capitalisation

 Lay it out neatly - use tabs

 Remember  in the workbook denotes a

continuing line

 Be patient

How to Embed JavaScript

 <html> <body>

<script type="text/javascript"> ... </script>

</body> </html>

11

<html>

<body>

<script type="text/javascript"> document.write("Hello World!") </script>

</body>

</html>

<SCRIPT LANGUAGE=“JavaScript”>

JavaScript statements here

</SCRIPT>

Embedding JavaScript in XHTML

 <script> tag is used to embed JavaScript code in
XHTML code of a web page

 The <script> tag can be used anywhere inside the
code but it is usually embedded right before of
after the <head> tag closes

 Any number of <script> tags can be embedded,
but usually one tag is enough

 Nesting <script> tags is prohibited and generates
errors

 HTML editors do not follow the <script> tag
guidelines and embed the tag any where and any
number of times

12

Development Environment

 JavaScript source code is written in an editor and
run and tested in a browser, like XHTML

 AceHTML editor has a JavaScript template and
also allows writing code manually

 Dreamweaver generates code automatically as the
author adds JavaScript functionality

 Error in JavaScript code prevent the page from
being rendered and thus debuggers are needed to
find where the errors are

 JavaScript interpreters serve the purpose by
showing where the error is

 Errors are reported one at a time and are usually
easy to fix

13

JavaScript Statements

<html>

<head><title>My Page</title></head>

<body>

<script language="JavaScript">

document.write('This is my first 

JavaScript Page');

</script>

</body>

</html>

Note the symbol for

line continuation

JavaScript Statements

<html>

<head><title>My Page</title></head>

<body>

<script language=“JavaScript">

document.write('<h1>This is my first 

JavaScript Page</h1>');

</script>

</body>

</html>

HTML written

inside JavaScript

JavaScript Statements

<html>

<head><title>My Page</title></head>

<body>

<p>

My Page

<a href="myfile.html"

onMouseover="window.alert('Hello');">

My Page

</p>

</body>

</html>

JavaScript written

inside HTML
An Event

How to Notate Comments

 Use a double slash (//)
 Web browsers interprets a single line proceeded by // As a

comment

 Enclose comments between /* and */
 Web browsers interprets an area enclosed by /* and */ as

comments.

 This notation is used when you have comments that span

multiple lines

17

<SCRIPT LANGUAGE =“JavaScript”>

// Your comment here

</SCRIPT>

<SCRIPT LANGUAGE =“JavaScript”>

/* more comment here

more comment here */

</SCRIPT>

Displaying a Document

 Use document.write() for Displaying text and graphics in the

browser window

 If you specify a string in document.write(), then browser will

display the specified string.

18

document.write(“string here”);

You can specify HTML tags within documents.write()

document.write("

JavaScript for displaying image here.

string here”);

When displaying multiple data, separate items by a

comma(,) or a plus (+) sign

Num=20;

Document.write(“The price is”,Num, “.Thank you.”);

Variables
 A variable is a symbolic name that stores a value and has

the some characteristics

 Identifiers
The name of the variable is its identifier
It must begin with a letter, underscore, or $ sign
It cannot begin with a number or other characters
JavaScript is case-sensitive
Examples: test, Test, jam234, _best, $abc,
a_1$4

 Types
Data types are implicit and are converted automatically
The first use of a variable declares its types
Types can be numbers (integer or real), logical (boolean),
or string
Examples: 3, 40, -10.5, true, false,
“zeid”, “9abc”

19

Variables

 A variable can hold data such as numbers or characters

 A variable name must with a letter,

 an underscore(“_”)

 or a dollar($)

20

<body>

<script language="javascript">

<!--

a=100;

document.write(a);

abc=20-10;

document.write(abc);

_abc=30-5;

document.write(_abc);

$abc=40-2;

document.write($abc);

answer=100-10*2;

document.write(answer);

//-->

</script>

</body>

Variables
 Scope

The code block within which the variable is available
Global variable is available everywhere
Local variable is available only inside a code block
Global variables are easy to manage but a bad habit

 Constants
Read only variables defined by a const keyword
Cannot change values or be re declared
Examples: const x=22

 Literals
Fixed values (hard-coded values) in JavaScript
Nesting literals needs extra care
Examples: 3.5, false, “Hello”

 Data Type Conversion
JavaScript converts data types automatically, but creates
confusion
Examples: answer=true, answer=20

 Escaping and Special Characters
Backslash is the escaping character and is used to define
special ones

21

Statements

 A statement uses an assignment operator, an equal
sign

 The operator has two operands on each of its side and
the value of the right operand is assigned to the left
one

 Example : x = y

 Values of right operand must always be known, if not,
and error is generated

 Statement must be only one line long and cannot be
broken

 Semicolon (;) is used to separate statements
 JavaScript also provides comment statements

◦ Inline Comment statement  //one line comment

◦ Block Comment statement  /* comment starts
here

comment ends here
*/

22

Expressions and Operators
 Expressions are a valid set of any variables that

evaluates to a single value

◦ Arithmetic Expressions evaluate to numbers

◦ Logical Expressions evaluate to booleans (true or false)

◦ String Expressions evaluate to strings

 JavaScript has a rich set of operators

◦ Assignment Operators =, +=, -=, *=, /=

◦ Comparison Operators ==, !=, >, >=, <,

<=

◦ Arithmetic Operators +, -, *, /, %, ++, -

-

◦ Logical Operators &&, ||, !

23Chapter 19 - JavaScript Syntax

Control Structures
 Control structures control the code execution

according to a certain criteria

 Conditional Statements
- Executes if the specified condition statement is met
- if and switch statements are the two types
if statements: structure 1: if (condition)
{…………}

structure 2: if (condition)
{…………}

else {…………}

switch statement: switch
(expression){

case condition1:
statements; break;
case condition2:
statements; break;
default:
statements;}

24Chapter 19 - JavaScript Syntax

Control Structures
 Loop Statements

- Executes repeatedly till a specific condition is met
- for, while, and do while statements are used
- break exits the loop all together
- continue skips the current iteration
for statement: for (ini value; end value;
incr){

statements
}

while statement: while (condition) {
statements

}

do while statement: do {
statements

}while (condition)

25

Code Execution
 JavaScript code shell looks like:

<script language=“javascript”>

function definition code

function definition code

function definition code

statements

function calls

statements

function calls

</script>

 JavaScript interpreter executes code top to bottom,

left to right

 Function definitions are executed only when called

26

Loop - for
 Use a for loop statement when you want to repeat statements a

fixed no. of. Times.

27

For (initial expression; terminating condition; increment expression){

process;

.

.

}

for (i=1; i<6; i++){

document.write("Loop",i,":JavaScript
");

}

Condition

Initial Value

Process

Increment

TRUE

FALSE

Conditional Branching
 Use the if statement to perform separate statements according to

a condition

28

if (condition){

statement for when condition1 is true;

} else {

statement for when condition1 false

}

Condition

Process1 Process2

TRUE

FALSE

if (condition1){

statement for when condition1 is true;

} else if (condition2){

statement for when condition2 true;

} else {

statements for when all condition are false;

}

Condition1

Process1

Process2

TRUE

FALSE

Process3

Condition2

FALSE

TRUE

Else if

if

Functions
 A function groups together a set of statements under a named

subroutine. A function can be called by that name whenever its action
is required.

 Reasons for use;

 Reuse script

 You can simply call the function as necessary and avoid rewriting
the entire block of code again.

 Clarify your program

 Functions make the purpose of each section clear and thus makes
your script coding more efficient.

 Easy maintenance

 You can simply change that part

 What is an argument

 Arguments are variables used in the functions. The values in
the variable are passed on by the function call

 What is a return value?

 A return value is value returned to the calling expression. It
can be omitted if a return value is not necessary.

29

Defining Functions
 How to define and call functions;

30

<HTML>

<HEAD>

<SCRIPT LANGUAGE=“JavaScript”>

Function function_name (argument, argument,…) {

my_statemetn;

:

return return_value;

}

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=“JavaScript”>

variable_name = function_name (argument, argument,…);

</SCRIPT>

</BODY>

</HTML>

Function

Definition

Calling a

function

The

returned

value

from the

function is

assigned

to this

variable

3

1

2

Function Example

 The function is defined in the <HEAD> section, and called

from the <BODY> part of the HTML document.

31

<html><head>

<title>kansu.html </title>

<script language="javascript">

function kansu (i){

result= i*1.05;

return result;

}

</script>

</head>

<body>

The result of the multipication of 100 and 1.05 is:

<script language="javascript">

<!--

x=kansu(100);

document.write(x);

//-->

</script>

</body></html>

Event Procedures / handlers

 What are events
 Events are actions that occur usually as a result of something a user

does such as clicking a mouse.

 Event Handlers
 Events handlers identify such events and they can be placed within the

HTML tags.

Event Handler Occurs when…

onChange User changes value of text, textarea or select element

onClick User clicks on form element or link

onFocus User gives form element focus

onLoad User loads the page

onUnLoad User unloads the page (exit)

onMouseOut User moves mouse pointer off of link or anchor

onMouseOver User moves mouse pointer over a link or anchor

onSelect User selects form element’s input field

onSubmit User submits a form

onReset User resets form fields
32

33

<html>

<head>

<title>event.html </title>

<script language="javascript">

function message(){

alert("Welcome to my home page");

}

</script>

</head>

<body>

Welcome to the home page

</body>

</html>

<INPUT TYPE=“button” onClick=“some JavaScript code here or some

function name here”>

<INPUT TYPE=“button” VALUE=“display message”

onClick=“alert(„Welcome to my homepage‟)”>

Event Procedure Example

Using Objects
 What is an Object ?

 An object consists of a collection of data and processes
(methods)

 What is a Property?

 A property is equivalent of object data or a value.

 Javascript defines properties as variables

 What is a Method

 A method defines what takes to perform.

 In Javascript a method is a function call.

 Types of Predefined objects

 String Objects (For working with text)

 Date Object (for working with dates and times)

 Math Objects (Mathematical constants and functions)

 Array object (To store a set of values in a single variable)

 Number Object (working with numbers)

 RegExp (Provides simple regular expression pattern searches.

34

Example Script for Getting Dates and

Time

35

<html>

<head>

<title>Date and Time </title>

</head>

<body>

The program will display the current year, month, date hour, minute, and second.

<script language="javascript">

<!--

// Creating an Date object

now = new Date();

/* Getting and Displaying the year, month, date, hour, minute, and second*/

document.write(now.getFullYear()+"Year");

document.write(now.getMonth()+1,"Month",now.getDate(),"date");

document.write(now.getHours(),"hour",now.getMinutes(),"minute");

document.write(now.getSeconds(),"second");

//-->

</script>

</body>

</html>

Example Script for Closing a Window

36

<HTML>

<HEAD>

<TITLE>new.html</TITLE>

</HEAD>

<BODY bgcolor="ffcc99" onload="setTimeout('window.close()',10000)">

I am a cat!!

<script language="javascript">

<!--

document.write("The last modified date/time:", document.lastModified,"
");

//--> </script>

<form>

<input type="button" value="close" onClick="window.close()">

</form>

</BODY>

</HTML>

Example Script for Last Modified Date and Time

37

<html>

<head>

<title>The last modified date and time</title>

</head>

<body>

<script language="javascript">

<!--

document.write("The last modified date/time:", document.lastModified);

//-->

</script>

</body>

</html>

Input and Output
 Client-side JavaScript has limited input/output

utilities due to security reasons

 The input functions available are:

prompt (message, default) takes an input

and returns it to the JavaScript program

confirm (question) asks the user to

confirm an input value and return a boolean value

 The output functions available are:
document.write (string)

alert (string)

Both these functions are used to output results in

a web page

38

HTML Forms and JavaScript

 JavaScript is very good at processing user

input in the web browser

 HTML <form> elements receive input

 Forms and form elements have unique

names

◦ Each unique element can be identified

◦ Uses JavaScript Document Object Model

(DOM)

Naming Form Elements in

HTML

<form name="addressform">

Name: <input name="yourname">

Phone: <input name="phone">

Email: <input name="email">

</form>

Forms and JavaScript

document.formname.elementname.value

Thus:

document.addressform.yourname.value

document.addressform.phone.value

document.addressform.email.value

Using Form Data

Personalising an alert box

<form name="alertform">

Enter your name:

<input type="text" name="yourname">

<input type="button" value= "Go"

onClick="window.alert('Hello ' + 

document.alertform.yourname.value);">

</form>

Example Script for Form Validation

43

<html><head><title>Form Validation Checking</title>

<script language="javascript">

<!--

//Calculate to check form input

function checkForm() {

if (document.fm.yubin.value==""){

alert("please input the postal code.");

return false;

}

if (document.fm.address.value==""){

alert("please input the address.");

return false;

}

if (document.fm.name.value==""){

alert("please input the name.");

return false;

}

return true;

}

:

:

Example Script for Form Validation…

44

:

:

//-->

</script> </head><body>

Please fill up these text boxes(all inputs are required).

<form action ="flm.cgi" name="fm" onSubmit="return checkForm()">

Postal Code:

<input type="text" Name="yubin" size="8">

Address:

<input type="text" Name="address" size="40">

Name:

<input type="text" Name="name" size="20">

<input type="submit" value="Submit">

<input type="reset" value="Cancel">

</form></body></html>

Summary
• JavaScript is a powerful language and makes a web

page dynamic

• JavaScript and Java are fundamentally different in most
ways

• JavaScript code is embedded in XHTML code

• JavaScript code is written and tested like XHTML code

• JavaScript begins with variables

• JavaScript uses statements to build code block

• JavaScript has a rich set of operators

• JavaScript has control structures to control code
execution

• Code execution follows top to bottom, left to right rule

• Input and output is handled using basic functions

45

